1.1 Differential Equations and Mathematical Models

Differential Equations

Changing Quantities

- The laws of the universe are written in the language of mathematics.
- Algebra is sufficient to solve many static problems,
- but the most interesting natural phenomena involve change and are described by equations that relate changing quantities.

Number of rabbits

Saving account balance

Derivative as Rate of Change

- Because the derivative $d x / d t=f^{\prime}(t)$ of the function f is the rate at which the quantity $x=f(t)$ is changing with respect to the independent variable t.
- It is natural that equations involving derivatives are frequently used to describe the changing universe.
- What is a differential equation?

An equation relating an unknown function and one or more of its derivatives is called a differential equation.

Order of a diff. eqn. is the
Examples of differential equations

- The equation order of the highest derivative present in the equation

$$
\frac{d x}{d t}=x^{2}+t^{2} \quad \text { (first order diff equ)(1) }
$$

involves the unknown function $x(t)$ and its first derivative $x^{\prime}(t)$.

- The equation

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+7 y=0 \quad \text { (second order diff. eqn } 2 \text {) }
$$

involves the unknown function $y(x)$ and its first two derivatives.

Goals of the Study of Differential Equations
Three Goals
The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical situation.
2. To find - either exactly or approximately - the appropriate solution of that equation.
3. To interpret the solution that is found.

Unknowns

- In algebra, we typically seek the unknown numbers that satisfy an equation such as

$$
x^{3}+7 x^{2}-11 x+41=0
$$

- By contrast, in solving a differential equation, we are challenged to find the unknown functions $y=y(x)$ for which an identity such as $y^{\prime}(x)=2 x y(x)$ - that is, the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=2 x y \tag{3}
\end{equation*}
$$

holds on some interval of real numbers.

- Ordinarily, we will want to find all solutions of the differential equation, if possible.
Overview: Summary from the "Useful links"

Example 1 Substitute $y=e^{r t}$ into the given differential equation to determine all values of the constant r for which $y=e^{r t}$ is a solution of the equation.

$$
y^{\prime \prime}+3 y^{\prime}-4 y=0
$$

Ans: If $y=e^{r t}$, then

$$
\begin{aligned}
& y^{\prime}=\left(e^{r t}\right)^{\prime}=r \cdot e^{r t} \\
& y^{\prime \prime}=\left(r e^{r t}\right)^{\prime}=r\left(e^{r t}\right)^{\prime}=r^{2} e^{r t}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
{[f(g(t))]^{\prime} } & =f^{\prime}(g(t)) \cdot g^{\prime}(t) \\
E x:[\sin (2 t)]^{\prime} & =(\cos 2 t)(2 t)^{\prime} \\
& =2 \cos 2 t
\end{aligned}
$$

Substitute $y, y^{\prime}, y^{\prime \prime}$ to the given eqn, we have

$$
r^{2} e^{r t}+3 r e^{r t}-4 e^{r t}=0
$$

$\Rightarrow e^{r t \neq 0}\left(r^{2}+3 r-4\right)=0$ Note $e^{r t}$ can't be 0 .

$$
\begin{aligned}
& \Rightarrow r^{2}+3 r-4=0 \\
& \Rightarrow(r+4)(r-1)=0 \Rightarrow r=-4 \text { or } r=1
\end{aligned}
$$

Example 2 Verify that $y(x)$ satisfies the given differential equation. Then determine a value of the constant C so that $y(x)$ satisfies the given initial condition.

$$
y^{\prime}=x-y ; y(x)=C e^{-x}+x-1, \underline{y(0)=10}
$$

ANS:

$$
\begin{aligned}
& \text { LHS }=y^{\prime}=\left(c e^{-x}+x-1\right)^{\prime}=-c e^{-x}+1 \\
& \text { RUS }=x-y=x-c e^{-x}-x+1=-c e^{-x}+1
\end{aligned}
$$

Thus y satisfies the given diff. eqn.
Since $y(0)=10$

$$
\begin{aligned}
& y(0)=C e^{-0}+0-1=C-1=10 \\
& \Rightarrow C=11
\end{aligned}
$$

Geometric properties of functions
Review: Let $g(x)=2 x^{2}+1$ and let ℓ be the line tangent to the graph of $g(x)$ at point $(1,3)$. What is the slope of ℓ ?

ANS: As $g^{\prime}(x)=4 x$
the slope of l is $g^{\prime}(1)=4$

Example 3 A function $y=g(x)$ is described by the following geometric property of its graph. Write a differential equation of the form $\frac{d y}{d x}$ having the function g as its solution (or as one of its solutions).
The line tangent to the graph of g at the point (x, y) intersects the x-axis at the point $\left(\frac{x}{2}, 0\right)$.

ANS: What is the slope m of line l
On one hand, the point (x, y) and $\left(\frac{x}{2}, 0\right)$ are on the line l.

$$
m=\frac{y-0}{x-\frac{x}{2}}=\frac{y}{\frac{x}{2}}=\frac{2 y}{x}
$$

- On the other hand, the slope of the tangent line l to $g(x)$ at point (x, y)

$$
m=g^{\prime}(x)
$$

Thus, we have

$$
g^{\prime}(x)=\frac{2 y}{x}
$$

$$
\text { or } \frac{d y}{d x}=\frac{2 y}{x}
$$

Mathematical Models
The Process of Mathematical Modeling

- The following example (Example 4) illustrates the process of translating scientific laws and principles into differential equations.
- We will see more mathematical models throughout this semester.

Example 4 In a city with a fixed population of P persons, the time rate of change of the number N of those persons infected with a certain contagious disease is proportional to the product of the number who have the disease and the number who do not. Set up a differential equation for N.
ANS: We know: multiply with a constant k function of y.

- The number of persons with disease: $N(t)$
- Rate of change of $N(t) \cdot \frac{d N(t)}{d t}=N^{\prime}(t)$
- The number who do not have the disease: $P-N(t)$

$$
\begin{aligned}
\frac{d N(t)}{d t} & =k \cdot N(t) \cdot(P-N(t)) \\
\Rightarrow \quad \frac{d N}{d t} & =k \cdot N \cdot(P-N)
\end{aligned}
$$

