1.1 Differential Equations and Mathematical Models

Differential Equations

Changing Quantities

- The laws of the universe are written in the language of mathematics.
- Algebra is sufficient to solve many static problems,
- but the most interesting natural phenomena involve change and are described by equations that relate changing quantities.

Derivative as Rate of Change

• Because the derivative dx/dt = f'(t) of the function f is the rate at which the quantity x = f(t) is changing with respect to the independent variable t.

 $\frac{2}{4} \times = \chi'$

- It is natural that equations involving derivatives are frequently used to describe the changing universe.
- What is a **differential equation**?

An equation relating an unknown function and one or more of its derivatives is called a **differential equation**.

Examples of differential equations

• The equation

Order of a diff. eqn. is the
order of the highest derivative present
in the equation
$$\frac{dx}{dt} = x^2 + t^2 \quad (-first order diff. eqn)(1)$$

involves the unknown function x(t) and its first derivative x'(t).

• The equation

$$rac{d^2y}{dx^2} + 3rac{dy}{dx} + 7y = 0$$
 (second order diff. equ2)

involves the unknown function y(x) and its first two derivatives.

Goals of the Study of Differential Equations

Three Goals

The study of differential equations has three principal goals:

- 1. To **discover** the differential equation that describes a specified physical situation.
- 2. To **find** either exactly or approximately the appropriate solution of that equation.
- 3. To **interpret** the solution that is found.

Unknowns

• In algebra, we typically seek the unknown numbers that satisfy an equation such as

$$x^3 + 7x^2 - 11x + 41 = 0.$$

• By contrast, in solving a differential equation, we are challenged to find the unknown functions y = y(x) for which an identity such as y'(x) = 2xy(x) - that is, the differential equation

Overview: Summary from the Useful links"

$$\frac{dy}{dx} = 2xy \tag{3}$$

holds on some interval of real numbers.

• Ordinarily, we will want to find *all solutions* of the differential equation, if possible.

Example 1 Substitute $y = e^{rt}$ into the given differential equation to determine all values of the constant r for which $y = e^{rt}$ is a solution of the equation.

ANS: If
$$y = e^{rt}$$
, then
 $y' = (e^{rt})' = r \cdot e^{rt}$
 $y'' = (re^{rt})' = r (e^{rt})' = r^2 e^{rt}$
Substitute y, y', y'' to the given eqn, we have
 $r^2 e^{rt} + 3r e^{rt} - 4 e^{rt} = 0$
 $\Rightarrow e^{rt + 0}(r^2 + 3r - 4) = 0$ Note e^{rt} can't be 0.
 $\Rightarrow r^2 + 3r - 4 = 0$
 $\Rightarrow (r+4)(r-1) = 0 \Rightarrow r = -4$ or $r=1$

Example 2 Verify that y(x) satisfies the given differential equation. Then determine a value of the constant C so that y(x) satisfies the given initial conditon.

$$y' = x - y; y(x) = Ce^{-x} + x - 1, \underline{y(0)} = 10$$

ANS: LHS = $y' = (Ce^{-x} + x - 1)' = -Ce^{-x} + 1$
RHS = $x - y = x - Ce^{-x} - x + 1 = -Ce^{-x} + 1$
Thus y satisfies the given diff. eqn.
Since $y(0) = 10$
 $y(0) = Ce^{-0} + 0 - 1 = C - 1 = 10$
 $\Rightarrow C = 11$

Geometric properties of functions

Review: Let $g(x) = 2x^2 + 1$ and let ℓ be the line tangent to the graph of g(x) at point (1,3). What is the slope of ℓ ?

Example 3 A function y = g(x) is described by the following geometric property of its graph. Write a differential equation of the form $\frac{dy}{dx}$ having the function g as its solution (or as one of its solutions).

The line tangent to the graph of g at the point (x, y) intersects the x-axis at the point $(\frac{x}{2}, 0)$.

Mathematical Models

The Process of Mathematical Modeling

- The following example (**Example 4**) illustrates the process of translating scientific laws and principles into differential equations.
- We will see more mathematical models throughout this semester.

Example 4 In a city with a fixed population of P persons, the time rate of change of the number N of those persons infected with a certain contagious disease is proportional to the product of the number who have the disease and the number who do not. Set up a differential equation for N.

Ŋ

ANS: We know:
The number of persons with disease:
$$N(t)$$

Rate of change of $N(t)$: $\frac{dN(t)}{dt} = N'(t)$
The number who do not have the disease: $P-N(t)$
 $\frac{dN(t)}{dt} = k \cdot N(t) \cdot (P-N(t))$
 $\Rightarrow \frac{dN}{dt} = k \cdot N \cdot (P-N)$